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Abstract: Dispersal of European corn borer, Ostrinia nubilalis Hiibner was examined by release and recapture of the
dye marked adults and by capture of the feral adults in and around the large 50 ha center pivot irrigated fields of
Bacillus thuringiensis (Bt) maize. Pheromone and black light traps were used to catch the adults. In 1999, 15 094
marked males and 7993 marked females were released, and in 2001, 13 942 marked males and 9977 marked females
were released. In 1999, maximum mean recapture beyond the release point was 1.95 and 1.67% for males and females,
but in 2001, the recapture rate was 9.97 and 4.37% for males and females. Few males (3.8%) and females (2.07%) were
recaptured in neighbourhood maize fields. An exponential decay function explained recapture of marked adults across
the dispersal distance. More than 90% of marked adults were recaptured within 300 m of the release point. Large
numbers of feral adults were captured throughout the study fields. Feral adult dispersal could be fitted to a linear
model. Virgin females (20% marked and 8% feral) were captured throughout the study fields. The recapture of marked
insects suggests that the dispersal was limited. However, capture of feral adults throughout Bt-maize fields indicate that
the actual dispersal may be more extensive than indicated by recapture of marked adults. Potential refuge sources for
the feral adults were 587-1387 m from the edge of the study fields. It is not clear if the dispersal recorded in this study is
extensive enough to support the current resistance management strategy for corn borers. There appears to be some
dispersal of corn borers from the non-transgenic ‘refuge’ fields into the transgenic fields that allows some genetic mixing
of the two populations.
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1 Introduction development of resistance in these pests. These models
include many assumptions about biological parame-
ters such as dispersal (Gourp, 1994). Some models for
development of resistance in European corn borer
against transgenic maize appear to be sensitive to the
dispersal parameters used (Gust et al., 2002; ONsTAD
et al., 2002). Therefore it would be useful to have a
better understanding of the dispersal behaviour of this
pest.

European corn borer, Ostrinia nubilalis (Hiibner), is
an important economic pest of maize, Zea mays L., in
North America and Europe. In North America
damage and control costs exceed $1 billion per year
(Mason et al., 1996; CaLvin and Van Duyn, 1999).
European corn borer has become a primary target of
transgenic Bacillus thuringiensis maize (Bt-maize)
hybrids (KozieL et al., 1993; OstLie et al., 1997). The
Bt-maize is extremely effective in controlling Euro-
*Current address: K-State University Agricultural Research Center- pean corn borer (OstLie et al., 1997). However, there
Hays, 1232-240th Avenue, Hays, KS 67601-9228, USA. is concern that Bt-maize acreage will continue to

Understanding the dispersal behaviour of highly
mobile pest insects is important to explain their
biology and ecology and in developing effective pest
management strategies (TurcHIN and TroeNy, 1993). In
addition, information on the dispersal behaviour of
pests targeted by transgenic crops is needed to
develop models that can be used to forecast the
potential evolution of pest resistance to transgenic
crops. Transgenic crops currently provide excellent
control of target pests, but there is concern that the
pests will develop resistance (or virulence) to this
trait. There is no empirical basis on which to judge
their durability and, thus, theoretical population and
genetic models have been used to forecast the
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increase and that the European corn borer could
develop resistance to the insecticidal protein expressed
in Bt-maize plants (OstLE et al., 1997). The selection
pressure on target pest populations is higher for
Bt-maize than it is for most chemical insecticides,
because the toxin is present continuously throughout
the growing season. This means that the chances of
developing resistance are high, and resistance could
develop quickly.

Laboratory selected strains of European corn borer
have developed moderate levels of resistance to Bt
proteins incorporated in meridic diet (Huancg et al.,
1999). This suggests that some forms of resistance
could be present in field populations, and the success
of Bt-maize could be short lived if European corn
borer develops resistance to Bt-maize (OstLE et al.,
1997). The Environmental Protection Agency (EPA)
of the United States has addressed this concern by
requiring seed companies to develop and implement a
resistance management plan (OstLE et al., 1997; US
EPA, 2001). They have mandated the use of the High
Dose/Refuge Strategy as a prophylactic insect resist-
ance management (IRM) plan (OstLE et al., 1997; US
EPA, 1998; SueLton et al.,, 2000). This strategy
includes two components: high dose Bt plants to kill
all susceptible homozygotes (SS) and most or all
heterozygotes (RS) for a resistance allele, together
with the planting of a susceptible maize crop (a refuge)
to produce SS insects to mate with any RR or RS
insects that might develop in the Bt-maize field. As
long as the resistance gene frequency is low and
resistance is inherited as a recessive trait, all resulting
offspring (SS or RS) should be susceptible to the high
dose Bt-maize plants. For this strategy to work, the
adult insects must be able to disperse from the non-Bt
‘refuge’ field into the Bt-maize field to facilitate mating
between susceptible and potentially resistant popula-
tions (Gourp, 1994; OstLE et al., 1997; SHELTON et al.,
2000).

European corn borer dispersal has been evaluated in
Iowa and Nebraska (Hunr et al., 2001; SHowers et al.,
2001). Most of the work from Iowa suggests that there
is extensive long distance dispersal and that random
dispersal is a reasonable assumption for modelling the
European corn borer. Marked adults were recovered
23-49 km from the release point (SHowers et al., 2001).
According to this ‘general model’ of European corn
borer dispersal (SHowers et al., 1980), adults leave the
maize field after emergence to seek out ‘action sites’
(dense, grassy patches in fence rows or field margins)
outside the field where they spend time and mate.
Females fly back into maize fields to oviposit. In
contrast, in northeastern Nebraska marked adults
released in furrow-irrigated maize tended to remain
in or near the irrigated maize (Hunt et al., 2001). When
they were released at the field edge, neither males nor
females displayed any tendency to move out of the
irrigated maize into the mixed grasses found along the
field edges as suggested by the general model of
dispersal. In Alberta, Canada, few adults were found in
action sites outside the irrigated maize fields, but they
appeared to remain inside the irrigated maize field
(LEeg, 1988). Thus, the dispersal behaviour appears to

be different in irrigated compared with that in dryland
maize fields.

A number of workers have described changes in
European corn borer dispersal and mating activity
under different environmental conditions. For exam-
ple, high densities of European corn borer were
associated with damp ground and the presence of
dew or free water (Derozari et al., 1977). Female
calling activity was reported to begin earlier and last
longer under high-humidity compared with low
humidity conditions (Wesster and Carpg, 1982; Royer
and McNEewL, 1991). Mating success was also reported
to be higher under high humidity conditions (Sparks,
1963; Rover and McNem, 1991). Increased flight
activity was observed under high humidity conditions
(SHowers et al., 1974).

Since environmental conditions are very different
across the European corn borer range it is likely that
its dispersal will be different across this range. This
means that there is no uniform assumption of extensive
and completely random dispersal that can be used in
IRM models (Gusk et al., 2002; Onstap et al., 2002)
that would be valid across these situations. These
changes in dispersal behaviour could impact IRM,
because reduced or enhanced dispersal could signifi-
cantly affect the evolution of resistance in European
corn borer against Bt-maize.

In Western Kansas, maize is commonly grown in
large irrigated fields (often under a center pivot
irrigation systems) and European corn borer action
sites are seldom observed outside of maize fields (LLB,
personal observation). Therefore, the current experi-
ments were conducted to study dispersal of European
corn borer adults in Western Kansas where maize is
grown under irrigation in a semi-arid climate. Mark-
release-recapture techniques were used together with
the capture of feral adults to evaluate European corn
borer dispersal.

2 Materials and Methods

The European corn borers used in these mark-release-recap-
ture experiments were reared at the USDA-ARS Corn Insects
and Crop Genetics Research Unit, Ames, IA, and shipped as
pupae to Garden City, KS. The source colonies were
established each summer from feral larvae collected in Iowa
maize fields. These insects would be the Z-type European corn
borers, which are found on maize throughout central North
America (Mason et al., 1996). The insects were reared on a
standard meridic diet (Lewis and Lynch, 1969). The reared
insects were marked by incorporating oil-soluble dyes [Sudan
Red 7B (C.1. 26050) and Sudan Blue 670 (C.1. 61554), Sigma-
Aldrich, Milwaukee, WI, USA] in the diet (Hunr et al., 2000).

Study fields were selected that did not have corn borer
infested stubble from the previous year in order to avoid
production of feral adults. The 1999 study fields had Bt-maize
stubble and the 2001 study field had winter wheat stubble. The
fields were planted to Bt-maize (Yieldgard™, 1999 = North-
rup King (now Syngenta Seeds Inc., Minneapolis, Minnesota,
USA); 2001 = Pioneer Hi-Bred International Inc., Johnson,
Towa, USA) to eliminate production of feral adults within the
field, to reduce the number of trapped adults, and to collect
data on feral adults that dispersed into the study fields.
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Fig. 1. Schematic representation of traps at locations in
and around 1999 study fields (O, release point; @,
pheromone trap; %, light trap) and the crop circles in the
immediate neighbourhood of study fields. Circle
letter = 1998 crop (M, maize; W, wheat; A, Alfalfa),
Circle background = 1999 crop (0, Maize; @, Wheat,
@, Alfalfa). Neighbourhood fields are not drawn to same
scale as study field. They were similar to the study field
in size. The letters A—H represent the perimeter traps on
each transect

2.1 1999 Experiments

Two neighbouring (5 m apart) center pivot irrigated circles
of Bt-maize were located 12 km southeast of Garden City,
Kansas (N37, E101), and will be referred as north field (ca.
44 ha) and south field (ca. 50 ha) (fig. 1). A small nursery of
non-Bt-maize (0.2 ha) was planted at the release site in each
field to rear corn borers on plants treated with RbCl and
CsCl for a companion dispersal study using these elemental
markers. However, the intended RbCl and CsCl treatments
and corn borer inoculations did not occur. Since the plants
were exposed to first generation released and feral moths
there could have been a few feral adults produced in this
nursery. However, we did not find corn borer infested plants
and there was no increase in the catch of feral insects in the
traps near the release site. The release site for the south field
was located in the center of the field, but the release site for
the north field was along the south margin of the field near
the south field (fig. 1).

The neighbourhood of the two study fields is illustrated in
fig. 1. The corners beyond the reach of the center pivot
sprinklers were in fallow wheat stubble with very few weeds.

There were four non-Bt-maize fields to the west of the study
fields and a field of maize stubble to the south that were
potential sources of first and second-generation feral Euro-
pean corn borer adults. There were no other maize fields
within several miles to the north and east, but there were
other maize fields scattered to the west. The non-Bt-maize
fields were sprayed with insecticides to control second-
generation corn borers, but the study fields were not sprayed.

The two test fields were planted at the same time, but the
south part of the north field needed to be replanted about a
month later, and development of that maize was considerably
later than that of the rest of the study fields. The first planting
in both fields was at the 12- to 14-leaf stage (ca. 60 cm high)
during the first generation flight of feral adults, while the
replanted maize was at the two-leaf stage. The first planting in
both fields was in the 14- to 18-leaf stage (64-120 cm high)
during the first release of marked adults, while the replanted
maize was at the 6- to 10-leaf stage. A severe hailstorm on 1
July caused serious plant and trap damage that terminated
recapture of the first release. The north half of the north field
was abandoned due to the hail damage. The first planting was
at the silking stage during the second release of marked adults,
while the replanted maize was at the 18-leaf to tassel stage.

The pupae for the first release were placed in the field on 22
June, just after the first generation flight of feral adults. There
were ca. 8288 blue pupae for the north field, and ca. 7187 red
pupae for the south field. The first release was in the field for
9 days before it was terminated by the hailstorm. The pupae
for the second release were placed in the field on 13 July, just
before the second flight of feral adults. The second release
contained ca. 7348 blue pupae for the north field and ca. 6372
red pupae for the south field. The second release was in the
field for 24 days.

During the first generation flight of feral adults there were
eight pheromone traps installed at sites A-H around the
perimeter of each field (fig. 1). During the first release of
marked European corn borer, additional traps were installed
in transects on the north south and east west transects
(fig. 1). European corn borer pheromone traps were installed
at all trapping sites, whereas black light traps were installed
only on the north south transect. The black light and
pheromone traps were installed 2 m apart but equidistant
from the release site. During the second release of marked
European corn borer, additional traps were installed on the
east west transect and three pheromone traps were installed
outside the study fields near non-Bt-maize fields that were
potential sources of feral adults (fig. 1). A European corn
borer pheromone trap and a black light trap were installed at
each release point to record the emergence pattern and to
calculate the dispersing proportions of males and females.
During the first release of marked adults there were 18 and 21
ECB pheromone traps and six and nine black light traps
installed in the north and south fields, respectively. In the
north field perimeter traps A—H were installed at 550, 274,
60, 366, 610, 732, 762 and 732 m from the release point,
respectively (fig. 1). In the south field traps were installed at
30, 61, 152 and 366 m on the north, south, east and west
transects from the release point (fig. 1). The perimeter traps
A-H were installed between 366 and 396 m from the release
point. During the second release of marked adults and
second-generation flight of feral adults, there were a total 18
and 21 pheromone traps and 7 and 15 black light traps
installed in the north and south fields, respectively.

2.2 2001 Experiments

A center pivot irrigated circle of Bt-maize (ca. 50 ha) was
located 16 km southwest of Garden City, Kansas (N37,
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Fig. 2. Schematic representation of traps at locations in
and around 2001 study field (O, release point; @,
pheromone trap; %, light trap) and the crop circles in the
immediate  neighbourhood of study field. Circle
letter = 2000 crop (M, maize; W, wheat;, A, Alfalfa),
Circle background = 2001 crop (o, Maize; @, Wheat,
@, Alfalfa; o, Potato). Neighbourhood fields are not
drawn to same scale as study field. They were similar to
the study field in size

E101) (fig. 2) that was planted to a Yieldgard™ Bt-maize
hybrid on 25 April. The field had been in winter wheat and
grazed out before maize was planted. A small nursery of non-
Bt-maize (0.2 ha) was planted at the release site to rear corn
borers on plants treated with RbCl and CsCl for a compan-
ion dispersal study using elemental markers. These corn
borers went into diapause and did not emerge during the
second flight as intended. There was no concentration of
unmarked adults in the traps near the nursery site so there
was no evidence that feral European corn borers were
produced in the nursery site. The neighbourhood of the study
field is illustrated in fig. 2. The corners beyond the reach of
the center pivot sprinklers remained in native sand hill
vegetation (grass and sagebrush). The surrounding fields
were wheat, potato, alfalfa, maize and native grass pasture.
The only known non-Bt-maize field was located ca. 0.2 km to
the southeast of the study field. The non-Bt-maize fields
in the neighbourhood may have been sprayed with insecticides
to control corn borers, but the study field was not sprayed.

The release site was located in the center of the field
(fig. 2). The European corn borer pupae marked with red dye
were taken to the field for three releases, ca. 13 920 on 17
June, ca. 12 052 on 11 July, and ca. 9360 on 5 August. Each
release lasted for 18 days. The first release of 17 June
occurred just after the peak of the first generation flight of
feral adults. The second release of 11 July occurred at the
beginning of the second-generation flight of feral adults. The
third release of 5 August occurred just after the second-
generation flight of feral adults.

There were 21 black light and 21-33 pheromone traps
installed inside the study field. The traps were installed at 15,

46, 107, 229 and 366 m on the north, south, east and west
transects from the release point (fig. 2). European corn borer
pheromone traps were installed at all trapping sites, whereas
black light traps were installed on the north south and east
west transects. The black light traps were installed 2 m from
the pheromone traps, but equidistant from the release site.
One pheromone and one black light trap were installed at the
release point. The traps on the north, south, east and west
transects were installed at specified distances from the release
site (fig. 2). Only pheromone traps were installed on the
diagonal transects at 107, 229 and 366 m from the release
point, respectively (fig. 2). The perimeter traps were 6—15 m
from the field edge. There were also four trapping sites
outside the study field over the native sand hill vegetation
and two in the non-Bt-maize field to the southeast that was a
potential source of feral European corn borer (fig. 2). One
temperature and humidity sensor (Hobo Pro, Onset Com-
puter Co., Bourne, MA) was installed near the release site
and at each of the eight trap locations on the perimeter of the
field.

Dye-marked European corn borer pupae were placed in
five-gal plastic buckets with a wet sponge added to maintain
humidity. The buckets were covered with corrugated roofing
steel to protect pupae from rain and irrigation, but allow the
adults to emerge and disperse as they enclosed. The buckets
were placed at release sites usually near the center of the
circular study fields. Pupae were placed in the field instead of
releasing caged adults to avoid unnatural interactions of
large numbers of adults being released at the same time.

Marked and feral European corn borer adults were
captured using two types of traps: Ellisco-type battery
operated black light traps (15 W) (Gemplers, Bellville, WI)
and 90 cm diameter metal screen Hartstack cone traps baited
with European corn borer (Iowa) pheromone lures (Trécé
supplied by Gimplers, Bellville, WI). A DDVP Vaportape 11
(Gemplers, Bellville, WI) was added to the black light trap
bucket to kill insets that fell into it. The European corn borer
adults remained alive in the pheromone traps and were
anesthetized with ether (automotive starter fluid) so they
could be counted and examined for marker. Pheromone lures
were replaced every 14 days. Bulbs in the black light traps
were replaced as needed. The pheromone traps captured
males only, whereas black light traps captured both the males
and females. The traps were monitored daily during feral
adult flights or marked adult releases. Adults captured at
each location were counted and identified as marked or
unmarked. This was done in the field when possible or the
adults were placed in resealable plastic bags labelled for each
location and taken to the laboratory and refrigerated until
they could be identified and recorded. In both years all
marked females were dissected in the laboratory to determine
mating status based on the presence or absence of a
spermatophore in the bursa copulatrix. In 2001 most of the
feral females captured before 25 July were dissected to
determine mating status. After that date the numbers of
females captured was too large to keep up with dissections.

2.3 Data analysis

For each release, the number of adults that emerged from
each pupal ring was estimated by dissecting one-fourth of
each ring to count intact and empty pupal cases after each
release. A sample of 150 adults was examined to determine
the sex ratio, and that ratio was used to estimate the number
of males and females from the number that emerged from
pupae. Dead adults in the buckets were counted and
subtracted from the estimated numbers of emerged adults
to obtain the number that dispersed from the bucket. The
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number captured at the release site was subtracted from
the number that dispersed from the bucket to determine the
number that dispersed beyond the release point.

We used TableCurve 2D to fit an equation to the marked
and feral capture data from traps along the four major
transects (north, south, east and west) across dispersal
distance (Jandel Scientific, 1996). Table Curve 2D automat-
ically fits several thousand families of equations to the data
(Systat Software Inc., 2002). We selected equations that best
described the data based on the magnitude and pattern of
residuals, lack-of-fit tests, and whether the equations were
biologically reasonable for describing the data.

Numbers of adults caught in each trap were summed over
time for each release or generation. The recaptured numbers
of marked adults in the first release of the 1999 south field,
and in each release of the 2001 field, were examined across
dispersal distance from the release point to the perimeter
traps. Only the combined recapture of marked males and
females in the light traps was tested for the 1999 south field.
Each release of 2001 contained five data variables: males
recaptured in pheromone traps, males recaptured in light
traps, females recaptured in light traps, combined males and
females recaptured in light traps, and combined males and
females recaptured for pheromone and light traps. The
capture of feral adults in first generation flight (2001 field)
and second-generation flight (1999 south field, 2001 field)
were also tested for best fit with dispersal distance from the
perimeter trap ‘as zero distance’ to the field center ‘release
point of marked insects’. The feral captures were also tested
for the five data variables as described above for the marked
recaptured adults.

The model equations (J=a + be™ and j=a/
(1 + 2a°hx)*%) for mark-recapture data were integrated
and the integrals were solved for a number of distances (x)
between 0 and 366 m to determine the area under the curve
corresponding to the distances within which 50, 90, 95 and
99% of the dispersed insects would be found. The slope and
intercept values of model equations for particular data sets
were used to calculate the estimated dispersal ranges.

The 1999 (second-generation flight south field) and 2001
data from pheromone and light trap catches on the main
transects were tested for normality using Shapiro—Wilk test,
and then analysed for male catch difference using a paired
t-test (Snepecor and Cocrran, 1989) in SAS (SAS Institute,
1999-2000). Data with non-normal distributions were

analysed using Wilcoxon Signed Rank test (Snepecor and
CocHraN, 1989). The 2001 data from pheromone traps on the
main transects (installed near light traps) were compared
with data from pheromone traps on transects without light
traps to evaluate potential differences in male catches due to
presence of the light trap. Only the traps installed at 107, 229
and 366 m were used because the diagonal transects did not
have the traps near the release site.

3 Results
3.1 1999 Experiments

The recapture of marked adults at the release point
varied from 3.72 to 11.27% during the early (June) and
late (July) season releases (table 1). The recapture of
marked males beyond the release point averaged 0.21—
1.10% during the early season release and 1.05-1.97%
for the late season release. The recapture of marked
females beyond the release point averaged 0.08-0.13%
during the early season release and 0.16-1.67% for the
late season release. Recapture at release point and
beyond the release point was somewhat higher during
second release in the north field than during the first
release or during both releases of south field (table 1),
when the second planting maize was in very attractive
growth stage (tassel to silking) during the second
release.

In the north field marked males and females that
dispersed beyond the release point were recaptured in
the same field and also in the south study field during
both releases. During the first release a total of 11
males and 2 females were recaptured in the north
field. Males were recaptured at 30 (n = 4) and 366
(n=2) m and females at 61 m (n = 1) from the
release point inside the north field. Males from the
north field were recaptured in the south field at 152 m
(n=2), 457, 579 and 671 m (n =1 each) from the
release point. One female from the north field was
recaptured in the south field at 152 m from the release

Table 1. Summary of dispersed and recaptured marked European corn borer male and female adults during 1999

and 2001
Number dispersed Percent recapture
No. pupae From Beyond From Beyond
producing release release release release
Year Release Date adults Colour Gender bucket point bucket point
1999 North field 1 22 June 8288 Blue Male 5130 4360 3.72 0.21
Female 1424 1225 3.72 0.08
2 13 July 7348 Blue Male 3105 2639 11.27 1.97
Female 2706 2327 11.27 1.67
1999 South field 1 22 June 7187 Red Male 3955 3362 5.61 1.10
Female 1728 1486 5.61 0.13
2 13 July 6372 Red Male 2904 2468 6.88 1.05
Female 2135 1836 6.88 0.16
2001 Field 1 17 June 13920 Red Male 4933 4802 2.65 3.60
Female 3312 3295 0.51 0.33
2 11 July 12052 Red Male 5258 5212 0.87 2.67
Female 3962 3939 0.58 0.61
3 5 August 9360 Red Male 3751 3531 5.86 9.94
Female 2703 2537 6.14 4.37
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Table 2. Parameters of the regression models describing the relationship between European corn borer adult catch

over distance for 1999 south field using TableCurve 2D

* Model 1, =a + be™; Model 2, y = a + bx.
" P, Pheromone; BL, Black light; M, Male; F, Female.

identical values of the independent variable.
¥ Probability of 0.05 or below indicates lack of model fit.

Maximum?* Lack of
Model* Trap' Gender’ a + SE b + SE ” attainable > model fit*
Marked adults (dispersal from release point to the perimeter trap) — Release: 1
1 BL MF 1.56 + 0.724 317.4370 + 2.987 0.99 0.99 0.21
Feral adults (dispersal from perimeter trap to the center of field) — Generation: 2
2 P M 663.55 + 132.00 —0.4633 £ 0.1360 0.51 0.54 0.75
2 BL M 296.68 + 37.70 —0.1473 £+ 0.0417 0.49 0.73 0.09
2 BL F 153.37 + 29.61 —0.0460 + 0.0328 0.13 0.60 0.05
2 BL MF 450.05 + 65.94 —0.1934 + 0.0730 0.35 0.67 0.07
2 P and BL MF 656.61 + 102.88 —0.1937 + 0.1140 0.18 0.52 0.14

¥ Maximum attainable r* indicates the maximum amount of variation that any equation fit to the data could explain, allowing for the pure
error in the data (Draper and Smrt, 1981). The pure error is the variation in the data that occurs when repeated measurements are made at

point. During second release a total of 69 males and
42 females were recaptured in the north field. Males
were recaptured at all distances from the release point
to the perimeter trap at the north end of the field
including 30 (n = 37), 61 (n=4), 152 (n = 6), 366
(n=4), 549 (n=1), and 610 m (n = 1) and females
were recaptured at 30 (n = 37) and 61 m (n = 2) from
the release point inside the same field. Males from the
north field were recaptured in the south field at 274
(n=4), 366 (n=2), 427 (n=4), 457 (n = 3) and
823 m (n = 3) from the release point. Females from
the north field were recaptured in the south field at
427, 457 and 488 m (n =1 each) from the release
point. Only one virgin female was recaptured at 15 m
beyond release point and that was during the first
release. The relationship between recapture of marked
adults and the dispersal distance from the release
point was not analysed due to incomplete trap
installation.

In the south field marked males that dispersed
beyond the release point were recaptured in the same
field and also in the north field and other neighbour-
hood fields during both releases, but females were
recaptured only in the release field. During the first
release a total of 45 males and 2 females were
recaptured. Males were recaptured at all distances
from the release point to the traps at field perimeter
including 30 (n = 12), 61 (n = 14), 152 (n = 14), and
366 m (n = 1) and both females were recaptured at
61 m from the release point inside the same field. One
male was recaptured in the north field at 853 m from
the release point, and three males were recaptured in
another field to the west at 884 m from the release
point. During the second release a total of 30 males
and 3 females were recaptured. Males were recaptured
at all distances from the release point to the traps at
field perimeter including 30 (n = 13), 61 (n = 4), 152
(n = 8), and 366 m (n = 1) and all three females were
recaptured at 30 m from the release point inside the
same field. Males from the south field were recaptured
in the north field at 853 (n = 2), 309 and 457 m (n = 1
each) from the release point. No virgin female was
recaptured beyond the release point during both

releases. Only the data set for the combined recaptures
of males and females in light traps during the first
release were suitable for regression analysis. The
relationship between recaptured adults and dispersal
distance from the release point could best be explained
by the model equation: y = a + be™™ (table 2). The
relationship can be described as a sudden decline in
recapture beyond the release point and the recapture
rate stays flat as the distance increases (not figured but
same as fig. 3¢ males).

A total of 895 feral males were captured in the eight
pheromone traps installed in the north and south fields
during first generation feral adult flight. However,
1256 and 2054 feral males were captured during the
second-generation feral adult flight in the north and
south fields, respectively. Two of the three neighbour-
hood fields that were monitored for European corn
borer populations turned out to be potential source
fields for feral adults (one to the south and one to the
west). But there were no significant regressions
(P > 0.05) for captures over distance from the source
fields. During the second-generation flight the rela-
tionship between capture of feral adults and the
dispersal distance from perimeter to center of the
study field was not analysed for north field due to
incomplete trap installation. In the south field during
the second-generation flight, a total of 7156 feral males
and 1730 feral females were captured. Feral males and
females were captured throughout the study field. The
relationship between feral adult captures and the
dispersal distance from perimeter traps into the field
can best be explained by the linear model equation:
y=a + bx (table 2, fig. 4a). Male captures in the
perimeter pheromone traps were surprisingly low and
were not included in this analysis. There was a general
trend for decline of captures with distance into the field
(fig. 4a). There was considerable variability in the light
trap data and the slopes were not significant
(P > 0.05). Feral females captured during second-
generation flight were not dissected for mating status.
Feral male captures in the pheromone and light traps
were not significantly different during the second-
generation flight (+ = -0.87; P = 0.397).

© 2005 Blackwell Verlag, Berlin, JEN 129(6) doi: 10.1111/j.1439-0418.2005.00966.281-292



Dispersal of O. nubilalis

287

Males: pheromone traps
- - - =-Males: light traps
(a) — — Females: light traps

20 4.
' 2001 field, 1st release

Number caught

400
b
20 (b)
=
(2]
=]
[\]
(3]
&
o
£
=]
Z
400
80 - (c)
'i 2001 field, 3rd release
£ 60|
2
i | Males. y=a+be™
é 40 ’1 Females. y=a/ (1 + 2a%bx)*®
3 |
z 20 44
e e
—~
0 T T —— \— — = 1
0 100 200 300 400

Distance from release point to the perimeter trap (m)

Fig. 3. Relationship between the numbers of marked
male and female adults of European corn borer recap-
tured within the Bt-maize fields during the first, second
and third releases of 2001 and the distance from the
release point in the field center to the perimeter traps

3.2 2001 Experiments

The recapture of marked adults at the release point
averaged 0.87-5.86% for the males and 0.51-6.14%
for the females across the three releases (table 1).
Recapture beyond the release point averaged 2.67—
9.94% for the males and 0.33-4.37% for females
across the three releases. Recapture was highest during
the third release. Neither the daily catches nor the
pooled recapture data for males or females at individ-
ual trapping sites correlate significantly with tempera-
ture, humidity, wind speed or wind direction
(P > 0.05).

Marked males and females that dispersed beyond
the release point were recaptured at all distances from
center to the perimeter of the field during each of
the three releases. During the first release a total of
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Fig. 4. Relationship between the numbers of feral male
and female adults of European corn borer captured
within the Bt-maize fields during their first or second-
generation flights in 1999 and 2001 and the distance
from the perimeter traps to the field centre

172 males and 9 females were recaptured. Males
and females were recaptured at 15 (n = 83, 3), 46
(n=128,2),107 (n =29, 1), 229 (n = 15, 2) and 366 m
(n =17, 1) from the release point within the release
field. During second release a total of 138 males and 24
females were recaptured. Males and females were
recaptured at 15 (n =47, 13), 46 (n =19, 5), 107
(n=22,1),229 (n = 32, 1) and 366 m (n = 18, 4) from
the release point within the release field. During the
third release a total of 355 males and 111 females were
recaptured. Males and females were recaptured at 15
(n =73, 54), 46 (n = 65, 26), 107 (n = 64, 16), 229
(n=77, 6) and 366 m (n = 71, 9) from the release
point within the release field. Five males from the third
release were recaptured in a neighbouring maize field
ca. 800 m from the release point. No males were
recaptured over the native vegetation outside the study
field during any of the releases. Of the 307 dissected
marked females recaptured during the three releases,
18% were virgin. The occurrence of the virgin females
did not decrease with distance from the release point,
but averaged 13-33.33% (table 3). The relationship
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Table 3. Mating status of marked and feral European corn borer females that dispersed between field center and

perimeter or vice versa during 2001

Release 1 Release 2 Release 3 Total
Distance (m)* No. Ct. No.Dis. M V No.Ct. No.Dis. M V No.Ct. No.Dis. M V No.Ct. No.Dis. M V V (%)
Marked females (dispersal from release point to the perimeter trap)

0 17 15 12 3 23 18 13 5 166 143 121 22 206 176 146 30 17.05
15 3 3 30 13 12 8 4 54 51 43 8 70 66 54 12 18.18
46 2 1 1 0 5 5 4 1 26 24 21 3 33 30 26 4 1333

107 1 1 1 0 1 1 10 16 13 10 3 18 15 12 3 20.00
229 2 2 2 0 1 1 10 6 6 3 3 9 9 6 3 3333
366 1 1 1 0 4 2 20 9 8 6 2 14 11 9 2 18.18
Feral females (dispersal from perimeter trap to the center of field)
Generation 1 Generation 2

Distance (m)" No.Ct. No.Dis. M V No.Ct No.Dis. M V

0 114 88 78 10 2116 105 102 3 2230 193 180 13  6.74
137 76 57 525 1425 152 146 6 1501 209 198 11 526
259 60 49 46 3 1856 154 150 4 1916 203 196 7 345
320 68 51 45 6 1320 66 66 0 1388 117 1 6 513
351 72 60 49 11 579 70 68 2 651 130 117 13 10.00
366 42 37 27 10 150 28 25 3 192 65 52 13 20.00
* 0 is release point and 366 is the perimeter.
"0 is perimeter and 366 is the release point.
M, Mated; V, Virgin; Ct, Caught; Dis, Dissected.

between male and female recaptures during first and
second releases and the dispersal distance could be
explained with a negative exponential decay model
equation y = a/(1 + 24°hx)*> (table 4). There was a
smooth decline in recapture with increasing distance
from the release point to the perimeter of the field
(fig. 3a,b). For the third release, this model worked for
variables that included females, but male variables
were better explained by the model equation
y=a + be™ (table 4). So for males there was a
precipitous decline in recapture beyond the release
point and the recapture rate stayed flat as the distance
increased (fig. 3c). Based on the dispersal equations
described for released marked European corn borers
the radius of a circle that included 90-99% of the
recaptured insects averaged 297-362 m (table 5). The
radius of the circle that included 50% of the recaptured
insects averaged only 93-107 m. Very few marked
European corn borers were recaptured beyond 300 m
from the release point. Marked male recapture on the
main transects was significantly higher in light traps
than in pheromone traps during the first release
(S=064.5, P=0.001) and in the third release
(S =289.5; P=10.001), but it was not significantly
different during the second release (S = 7; P = 0.733).
The marked male recaptures in pheromone traps
installed alone or together with light traps were
not significantly different for any of the three releases,
first release (r = —1.41; P = 0.252), second release
(t =-2.47, P =0.090), or third release (r = —0.28;
P = 0.798).

A total of 1213 feral males and 432 feral females
were captured in the study field during first genera-
tion flight, and 25 242 feral males and 17 828 feral
females were captured during second-generation
flight. For both generation flights the relationship

between feral adults and distance from the perimeter
traps into the field could best be explained with a
linear model y = a + bx (table 4; fig. 4b,c). During
the first generation flight male captures in pheromone
traps at the perimeter were much lower than catches
in traps that were farther into the field, so the
perimeter trap catches were not included in the
regression analysis for that data set. As in the 1999
study, there was a lot of variability in the feral adult
catch for both generations and there were no trends
in the data that could indicate any relationship other
than a linear one. Although the model was a good fit
(P > 0.05) for all the catch variables for the first
flight, the slopes were rather flat and suggest a rather
uniform adult distribution (table 4; fig. 4b). The
model was not a good fit (P < 0.05) for female
captures in light traps during the second generation
and the slopes were flat suggesting a rather uniform
distribution of adults (table 4; fig. 4c). Virgin females
constituted 7% of the 917 dissected females, and the
ratio of virgin females was relatively constant from
0 to 320 m into the field (3-20%) (table 3). Feral
male captures were not significantly different between
pheromone and light traps on the main transects
during the first generation flight (= 1.31;
P = 0.205), but they were significantly higher in light
traps than in pheromone traps during the second-
generation flight (z = 7.54; P = 0.001). Feral male
captures were significantly higher (¢ = 3.20; P = 0.05)
in pheromone traps placed together with light traps
than in the pheromone traps placed alone during
the first generation flight, but they were signifi-
cantly higher (r = -7.41; P = 0.005) in the phero-
mone traps placed alone than in traps that were
placed together with light traps during the second-
generation flight.
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Table 4. Parameters of the regression models describing the relationship between European corn borer adult catch
over distance for 2001 using TableCurve 2D

Maximum?* Lack of
Model* Trap' Gender’ a £ SE b + SE ” attainable > model fit*
Marked adults (dispersal from release point to the perimeter trap)
Release: 1 3 P M 15.02 + 1.90 0.0007 £ 0.0003 0.74 0.75 0.96
3 BL M 116.02 + 4.06 0.00005 £ 0.00001 0.97 0.98 0.20
3 BL F 17.00 = 0.59 0.0145 + 0.0082 0.98 0.98 0.91
3 BL MF 133.01 + 4.17 0.00005 £ 0.00001 0.98 0.99 0.25
3 P and BL MF 148.02 + 441 0.00003 + 0.000006  0.98 0.99 0.17
Release: 2 3 P M 10.82 + 3.28 0.0004 + 0.0003 0.29 0.34 0.90
3 BL M 35.03 + 3.38 0.0003 £ 0.0001 0.83 0.89 0.15
3 BL F 23.00 + 1.23 0.0013 + 0.0004 0.94 0.95 0.50
3 BL MF 58.02 + 3.77 0.0001 £ 0.00003 0.92 0.95 0.06
3 P and BL MF 69.03 + 4.45 0.00005 + 0.00001 0.91 0.93 0.41
Release: 3 1 P M 4.35 + 0.59 13.6500 + 2.6360 0.58 0.58 0.99
1 BL M 10.30 + 1.25 191.7000 £ 5.7496 0.98 0.99 0.33
3 BL F 166.00 + 2.66 0.00007 £ 0.00001 0.99 0.99 0.62
3 BL MF 368.00 + 7.64 0.00001 + 0.000002  0.99 0.99 0.36
3 P and BL MF 385.99 + 8.74 0.000007 £ 0.000001 0.99 0.99 0.06
Feral adults (dispersal from perimeter trap to the center of field)
Flight: 1 2 M 64.68 + 16.37 —-0.0471 + 0.0175 0.33 0.35 0.94
2 BL M 46.05 + 11.22 —0.0168 + 0.0133 0.08 0.29 0.38
2 BL F 24.89 + 741 —0.0060 = 0.0088 0.02 0.16 0.67
2 BL MF 70.94 + 18.17 —-0.0227 + 0.0216 0.06 0.24 0.47
2 P and BL MF 104.37 + 15.28 —0.0379 £+ 0.0182 0.19 0.39 0.33
Flight: 2 2 P M 462.06 + 46.67 —-0.3275 £+ 0.0555 0.65 0.67 0.90
2 BL M 1083.49 + 90.96 —-0.6677 + 0.1082 0.67 0.77 0.20
2 BL F 1015.57 £+ 102.36 —-0.2302 + 0.1218 0.16 0.55 0.04
2 BL MF 2099.07 + 186.66 -0.8979 + 0.2221 0.46 0.69 0.07
2 P and BL MF 2561.09 + 215.54 —1.2254 £+ 0.2564 0.55 0.71 0.12

* Model 1, 5 = a + be™; Model 2, § = a + bx; Model 3, = a/(1 + 2a°hx)">.

P, Pheromone; BL, Black light; M, Male; F, Female.

¥ Maximum attainable /* indicates the maximum amount of variation that any equation fit to the data could explain, allowing for the pure
error in the data (Draper and Smith, 1981). The pure error is the variation in the data that occurs when repeated measurements are made at

identical values of the independent variable.
$ Probability of 0.05 or below indicates lack of model fit.

Table 5. Estimated disper-
sal ranges of marked

Model parameter Estimated dispersal ranges (m)"

European corn borer adults Release Model* a b 50% 90% 95% 99%
based .0 1 models fC.)r rec.ap ) Males from pheromone traps
ture distance relationship 1 3 15.02 0.0007 101 300 332 359
during three releases of 2001 | » 3 10.82 0.0004 107 302 333 359
3 1 4.35 13.65 183 329 347 362
Males from light traps
1 3 116.02 0.00005 96 298 331 359
2 3 35.03 0.0003 98 299 331 359
3 1 10.3 191.7 180 329 347 362
Females from light traps
1 3 17 0.0145 93 298 331 359
2 3 23 0.0013 96 298 331 359
3 3 166 0.00007 94 297 331 358

* Model 1, 7 = a + be™; Model 3, j = a/(1 + 2a°hx)*.
T Estimated dispersal ranges are the distances from the field centres within which 50, 90, 95 and
99% of the dispersed adults are expected to remain, respectively.

4 Discussion

In mark-release-recapture experiments marked insects
are often released at high densities from a single point
(PLant and CunningHaM, 1991). This can expose the
insects to unusually high densities at the release site,
which can affect the dispersal behaviour of study insects.
Transportation from the laboratory to the field can
also expose the insects to sudden changes in environ-
mental conditions and can cause unnatural dispersal.

Therefore, we chose to place pupae at the release sites so
that adults could emerge and disperse as they eclosed
over several days.

The first release was made in pre-reproductive stage
maize, while the second and third releases were made
in post-reproductive maize. There is no obvious explan-
ation for the difference in the recapture rate of second
and third releases. However, during the second release,
recapture also was low at the release point. Perhaps the
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actual adult dispersal was higher during the second
release and populations dispersed out of the field more
quickly. The high recapture rate in the north field
during the second release in 1999 appeared to be
associated with the very attractive stage (silk-to-milk)
of the replanted maize compared with the more mature
maize in the rest of the neighbourhood. Despite the
smaller number of released insects the recapture rate
was higher for both males and females during the third
release compared with the first two releases of 2001. In
the Towa dispersal study, the recapture of marked
males was higher in late season tall, mature maize than
in early season short vegetative maize (SHOWERS et al.,
2001). European corn borers are reported to disperse
many meters or kilometres before settling again.
However, in those studies large numbers of caged
adults were transported to an open area surrounded by
mixed vegetation and insects were allowed to disperse
all at once at dusk. The nearest traps were installed at
200 m from the release point.

The rate of male capture in light traps and phero-
mone traps placed 2 m apart appeared to be inde-
pendent. For most data sets there was no difference in
male capture for pheromone traps sited alone or with
light traps. This means that there was no interference
or competition between those traps. In a preliminary
study there also was no difference in the capture of
feral European corn borer adults in light traps (15 W
bulbs) placed 1.5, 3 or 5 m apart (J.A.Q., unpublished
data). This suggests that the distance between light
traps in this study (15 m) did not cause interference
between the light traps. Baker and Sapovy (1978)
reported that captures of the yellow underwing,
Noctua pronuba, and the heart and dart, Agrotis
exclamationis, declined only for light traps (125 W
bulbs) that were 1-3 m apart. This suggested that the
area of influence for the light traps was 1-3 m. We are
not aware of any reports on the area influence for
European corn borer pheromone traps. Male recapture
rate appeared to be slightly higher in light traps than in
pheromone traps where they were sited together.

Distance from the release site was the only variable
that could be correlated with dispersal. Recaptures of
marked adults were similar in all directions. The study
fields were center pivot irrigated so the conditions must
have been rather uniform for dispersing adults in
different parts of the field. Average daily wind direc-
tion and wind speed did not correlate with recaptures.
However, interpreting the effects of wind direction,
wind speed, temperature or humidity on recaptures is
questionable since we did not have specific measure-
ments for the time of day the insects were active. Also
the winds at ground level can be turbulent, and wind
direction on the surface and within the plant canopy
may not correlate with the above plant canopy winds
(Jermy et al., 1988). The effect of wind may be more
important when insects are flying between maize fields
and may have played a role in the dispersal of feral
populations from refuge sources into the study fields.
We did not have enough traps installed outside the
release field to adequately evaluate field-to-field move-
ment. We were probably capturing insects that were
flying within the maize canopy.

One-dimensional spatial dispersal can best be
explained with a mathematical equation (PLant and
CunningHAM, 1991). The two different mathematical
models required to explain the dispersal data for
released insects and for feral insects were interesting.
One explanation might be that the linear distribution
of feral insects may represent the extended tail of the
exponential decay equation when it gets beyond
100200 m from the source field. In this case, there
must be a number of fields in the neighbourhood
producing relatively large numbers of ferel insects,
because the numbers were relatively high and they
appeared to be entering the field from all directions.
The neighbourhood maize fields would not be expected
to produce large numbers of corn borers because the
fields were treated with insecticides to keep insect
damage below economic injury levels. In 1999 we were
aware of several non-Bt-maize fields near the study
fields. In 2001 we were aware of only one non-Bt-maize
field within 1000 m of the study field.

The two different mathematical models required to
explain the dispersal data may mean that the released
marked insects and the feral insects represent two sub-
populations or age groups. Other insects such as the
pink bollworm, Pectinophora gossypiella (Saunders),
(TaBasunik et al., 1999) and western corn rootworm,
Diabrotica virgifera virgifera LeConte, (Coats et al.,
1986) are reported to have some individuals that are
long distance dispersers and others that are short
distance dispersers. This suggests that one group of
European corn borers may settle down within the
release field, and the other group leaves the field
immediately upon eclosion. In Iowa, SHowers et al.
(2001) reported that released males did not land until
they had flown for several meters or kilometres. In this
study, adults that dispersed beyond the natal field
would not have been subject to recapture in the traps
installed in the study field. The low recapture rate for
marked European corn borer in this study could
indicate that many of the marked insects were not
staying in the study field and were not available for
capture in the traps we installed. The relatively
uniform distribution of marked adults across the
release field suggests that corn borers have the poten-
tial to disperse extensively.

The availability of favourable humidity in irrigated
maize fields would appear to encourage corn borers to
stay in the natal field or to disperse to other irrigated
maize fields. This agrees with the observation that no
males were recaptured over the native vegetation
outside the 2001 field, even when males were recaptured
in the neighbouring maize field. Dispersal between the
two study fields of 1999 suggests that males dispersed
out of the release field more frequently than did females.
These results do not readily fit the ‘general model of
European corn borer dispersal’ from lowa (SHOWERs
et al., 1980). However, they are similar to the results
reported from Nebraska (Hunt et al., 2001). In this
study the dry native vegetation areas between the study
fields seemed to be barriers for the dye-marked insects
within the fields. However, these areas did not appear to
inhibit the dispersal of feral populations. European
corn borers were not attracted to pheromone traps

© 2005 Blackwell Verlag, Berlin, JEN 129(6) doi: 10.1111/j.1439-0418.2005.00966.281-292



Dispersal of O. nubilalis

291

located in the native vegetation outside the irrigated
fields and action sites were not observed in these areas.

The large number of feral male and female captures
throughout the study fields suggests that long distance
dispersers were present and that there were quite a few
of them. There was only a slight decline in the
occurrence of males or females across the distance
into the study fields indicating they may have flown
long distances from their natal fields. The distance
from potential source fields was at least 587-1387 m.
The distribution of feral insects was best explained
with a nearly flat linear model. There is no evidence
that the small non-Bt nursery block in the field center,
that was intended for producing Rb/Cs marked insects,
produced any non-dye-marked or ‘feral insects’ even
during the second flight. The distribution of non-dye-
marked or feral insects was relatively uniform through-
out the study fields.

There was no evidence that the pheromone traps
attracted feral males into the study fields. The phero-
mone traps would have attracted both marked and
feral males flying near the study fields. We would have
expected a higher recapture rate for the dye-marked
males if males had been attracted into the study field.
In addition, the pheromone traps located outside the
fields did not attract any marked males.

Dispersal of corn borers plays an important role in
the IRM strategy for corn borers in Bt-maize. Based on
standard assumptions of completely random dispersal
for males and females, resistance develops in the
European corn borer within 30 years (Guse et al.,
2002). Our data suggest that male dispersal may be as
extensive as assumed in the model, but that female
dispersal may be less extensive than assumed. Fewer
females than males were recaptured in the mark-
released populations and fewer feral females than males
were captured in the study fields in light traps. This
suggests that females would lay more eggs in the natal
field than assumed in the IRM models. This would tend
to allow the susceptible insects to better maintain their
populations in the refuge plantings. It would also tend
to confine any resistant genes to the natal Bt-maize field
where the next generation would be more likely to be
exposed to high-dose Bt-maize. Both of these effects
would tend to slow down the development of resistance
making the IRM strategy more robust. However, the
extent of pre-copulatory dispersal of corn borer females
and the location of mating activity are important
variables that still need to be better understood,
particularly in the irrigated corn production situation.
These variables could affect IRM in these areas.

The current IRM plan for Bt-maize assumes that
surviving females in a Bt-maize field will mate with
susceptible males that disperse from refuge plantings in
the neighbourhood. In the current studies, a significant
proportion of females remained virgin (18-20%), and
this percentage did not appear to decrease with distance.
Even feral populations had >20% virgin females.
Many of the dye-marked females must have mated near
the release point before dispersing, because there did not
seem to be a decrease in virgin female occurrence with
distance from the release point. It is difficult to know
whether the feral females mated in their natal field or in

the new field. The reason for the high frequency of virgin
females is still mysterious. Insect flight often becomes
more local and presumably less dispersive as females age
and the need to lay eggs increases (Jounson, 1963). Since
there were no black light traps outside the study fields it
was not possible to keep track of female movement
outside the study fields. However, in the two 1999 study
fields only a few females from the north study field were
recaptured in the other study field.

It is not entirely clear how to use this dispersal data
to select the maximum separation distance that would
be needed between Bt and non-Bt refuge fields that
would allow adequate mixing of the two populations
to support the high-dose-refuge IRM strategy. Mo
et al. (2003) suggest a maximum separation of <50 m
for cauliflower and broccoli fields based on the average
dispersal distances of 13-35 m recorded for the dia-
mondback moth, Plutella xylostella (L). They also
calculate that the radius of an ellipse that would
include 99% of the moths would be about 200 m.

The current resistance management program for
European corn borers in Bt-maize requires that the
non-Bt-maize refuge field be within 800 m (0.5 mile)
of the Bt-maize field. In this study, the radius of the
circle that included 50 and 99% of European corn
borers was about 100 and 350 m, respectively. This is
considerably less than the 800 m currently recom-
mended as the maximum separation for resistance
management of this insect. However, it should be
noted that the distribution of feral European corn
borers was more extensive than that of dye-marked
insects (flat and linear vs. rapid decline in an
exponential decay distribution). The actual dispersal
between fields may well be considerably greater than
the data for dye-marked insects suggest. It is not clear
if the dispersal recorded in this study is extensive
enough to support the current resistance management
strategy for corn borers. There appears to be some
dispersal of corn borers from the non-transgenic
‘refuge’ fields into the transgenic fields that would
allow for some genetic mixing of the populations.
However, the adult dispersal could be different in
different regions depending upon agronomic and
climatic conditions. Additional studies will be needed
to better understand any age related changes in moth
dispersal behavior of O. nubilalis. If very many corn
borers engage in long distance dispersal during the
pre-oviposition period then the distance between
Bt-maize fields and refuge fields will not need to be
quite as restrictive as it is now.
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